OCR correction based on document level knowledge

نویسندگان

  • Thomas A. Nartker
  • Kazem Taghva
  • Ron Young
  • Julie Borsack
  • Allen Condit
چکیده

For over 10 years, the Information Science Research Institute (ISRI) at UNLV has worked on problems associated with the electronic conversion of archival document collections. Such collections typically have a large fraction of poor quality images and present a special challenge to OCR systems. Frequently, because of the size of the collection, manual correction of the output is not affordable. Because the output text is used only to build the index for an information retrieval (IR) system, the accuracy of non-stopwords is the most important measure of output quality. For these reasons, ISRI has focused on using document level knowledge as the best means of providing automatic correction of nonstopwords in OCR output. In 1998, we developed the MANICURE [1] post-processing system that combined several document level corrections. Because of the high cost of obtaining accurate ground-truth text at the document level, we have never been able to quantify the accuracy improvement achievable using document level knowledge. In this report, we describe an experiment to measure the actual number (and percentage) of non-stopwords corrected by the MANICURE system. We believe this to be the first quantitative measure of OCR conversion improvement that is possible using document level knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Image Dewarping Based on Text Line Detection and Surface Modeling (RESEARCH NOTE)

Document images produced by scanner or digital camera, usually suffer from geometric and photometric distortions. Both of them deteriorate the performance of OCR systems. In this paper, we present a novel method to compensate for undesirable geometric distortions aiming to improve OCR results. Our methodology is based on finding text lines by dynamic local connectivity map and then applying a l...

متن کامل

A Content-based Probabilistic Correction Model for OCR Document Retrieval

The difficulty with information retrieval for OCR documents lies in the fact that OCR documents comprise of a significant amount of erroneous words and unfortunately most information retrieval techniques rely heavily on word matching between documents and queries. In this paper, we propose a general content-based correction model that can work on top of an existing OCR correction tool to “boost...

متن کامل

Information retrieval for OCR documents: a content-based probabilistic correction model

The difficulty with information retrieval for OCR documents lies in the fact that OCR documents comprise of a significant amount of erroneous words and unfortunately most information retrieval techniques rely heavily on word matching between documents and queries. In this paper, we propose a general content-based correction model that can work on top of an existing OCR correction tool to “boost...

متن کامل

Enhancing Image-based Arabic Document Translation Using a Noisy Channel Correction Model

An image-based document translation system consists of several components, among which OCR (Optical Character Recognition) plays an important role. However, existing OCR software is not robust against environmental variations. Furthermore, OCR errors are often propagated into the translation component and cause, causing poor end-to-end performance. In this paper, we propose an imagebased docume...

متن کامل

Text Pre-processing and Text Segmentation for OCR

Optical Character Recognition (OCR) systems have been effectively developed for the recognition of printed script. The accuracy of OCR system mainly depends on the text preprocessing and segmentation algorithm being used. When the document is scanned it can be placed in any arbitrary angle which would appear on the computer monitor at the same angle. This paper addresses the algorithm for corre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003